Section - A

1. If the centroid of the triangle formed by $(7, x),(y,-6)$ and $(9,10)$ is at $(6,3)$, then (x, y) is:
(a) 4 cm
(b) 3 cm
(c) $\sqrt{3} \mathrm{~cm}$
(d) 2 cm
2. If the sum of n terms of an A.P. be $3 n 2+n$ and its common difference is 6 , then its first term is:
(a) 1
(b) 4
(c) 3
(d) 2
3. $P Q$ is a tangent drawn from a point P to a circle with centre O and $Q O R$ is a diameter of the circle such that $\left\llcorner P O R=120^{\circ}\right.$ then $\llcorner O P Q$ is:
(a) 30°
(b) 45° (c) 90°
(d) 60°
4. In a single throw of a pair of dice the probability of getting the a perfect square is:
(a) $1 / 6$
(b) $7 / 36$
(c) $1 / 18 \mathrm{~S}$
(d) $2 / 9$
5. If the centroid of the triangle formed by $(7, x),(y,-6)$ ar $(3,10)$ is at $(6,3)$, then (x, y) is:
(a) $(5,4)$
(b) $(5,2)$
($\triangle 5,-2$)
(d) $(4,5)$
6. The circumference of a circle is 100 cm . The side square inscribed in the circle is:
(a) $100 \sqrt{ } 2 / n \mathrm{~cm}$
(b) $100 / \mathrm{ncm}$
(c) $50 \sqrt{ } 2 / \pi \mathrm{cm}$
(d) $50 \sqrt{ } 2 \mathrm{~cm}$
7. If $a x^{2}+b x+c=0$ has equal roots,
(a) $-b^{2} / 2 a$
(b) $b / 2 a$
(c) $-\mathrm{b} / 2 \mathrm{a}$
(d) $-b^{2} / 4 a$
8. The volume of the greatest spherat can be cut be cut off from a cylinder big of wood base radius 1 m and height 5 cm is:
(a) 10/3 п
(c) $20 / 3$ п
(d) $4 / 3$ п
9. Which of the followin
n not be probability of an event?
(a) $9 / 4 \mathrm{~cm}$
(b) $4 / 9 \mathrm{~cm}$
(c) $9 / 2 \mathrm{~cm}$
(d) $2 / 9 \mathrm{~cm}$
10. The distance between two parallel tangents of a circle of radius 4 cm :
(a) 4 cm
(b) 3 cm
(c) 2 cm
(d) $\mathbf{1 ~ c m}$

Section - B
11. A cylinder, cone and a hemisphere of equal base have the same height. What is their ratio in their volumes?
12. For what value of P, are the points (2,1) $\left(P_{r},-1\right)$ and $(-1,3)$ collinear.
13. A letter is chosen at random from the word 'MATHEMATICS'. Find the probability of choosing letter A.
14. Find the sum of all 3 - digit natural numbers which are divisible by 13.
15. Solve for x :
$x^{2}+x-(a+2)(a+1)=0$
16. For what value of \mathbf{n} is the nth term of the following two APs the same:
(a) $69,68,67, \ldots$.
(b) 1, 7, 13, 19,
17. Triangle $A B C$ is an isosceles triangle in which $A B=A C$ circumscribed about a circle Show that $B C$ is bisected at the point of contact.
18. What is the ratio of the areas of a circle and equilateral triangle whose diameter and a side are respectively equal.

Section - C
19. Draw a triangle $A B C$ with sides $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $3 / 4$ of the corresponding sides of triangle $A B C$.
20. The perimeter of an isosceles triangle is 32 cm . If each equal sidejs 5/6 times the base. Find the area of the triangle.
21. Two circle touch internally at a point P and from a point \mathbb{O} the common tangent at P. Tangent segment $T Q, T R$ are drawn to the circles. Prove that $\pm T R$
22. The sum of 5th and 9th term of an A.P. is 72 and th S 5 of 7 th and 12 th terms is 97 . Find the A.P.
23. The vertices of a triangle are ($-1,3$); and (5 Find the length of medians through vertices $(-1,3)$ and (5, 1).
24. A motor boat whose speed is $15 \mathrm{~km} / 山 \mathrm{~h}$, in a total time of 4 hours 30 minutes. Fipd speed of the stream.
25. A box contains 20 balls bearing (1)nbers $1,2,3,4, \ldots \ldots, 20 . A$ ball is drawn at random from the box. What is the probability that the number on the ball is?
(a) not divisible by 10 .
(b) an odd number
(c) divisible by 2 or 3
(d) prime number
26. The point R divides the line segment $A B$, where $A(-4,0)$ and $B(0,6)$ are such that $A R=3 / 4$ $A B$. Find the co - ordinate R.
27. A toy is in the form of a cone mounted on a hemisphere with same radius. The diameter of the base of the conical portion is $\mathbf{7 c m}$ and the total height of the toy is $\mathbf{1 4 . 5} \mathbf{~ c m}$. Find the volume of the toy. [Use $n=22 / 7]$
28. A toy is in the form of a cone mounted on a hemisphere of common base radius $7 \mathbf{c m}$. The total height of the toy is 31 cm . Find the total surface area of the toy. [Use $n=22 / 7$]
Section - D
29. Construct a triangle $A B C$ with $B C=6 \mathrm{~cm},\left\llcorner A=60^{\circ}\right.$ and median $A D$ through A is 5 cm long. Construct a triangle $A^{\prime} B C^{\prime}$ similar to triangle $A B C$, with $B C^{\prime}=8 \mathrm{~cm}$. Write steps of construction.
30. The interior angle of a polygon are A.P. The smallest angle is 120° and the common difference is $5^{\mathbf{0}}$. Find the number of sides of polygon.
31. The sum of the radius of the base and the height of a solid cylinder is $37 \mathbf{c m}$. If the total surface area of the solid cylinder is 1628 cm2, find the volume of the cylinder.
(Take $n=22 / 7$)
32. There are two poles, one each on either bank of river just opposite to each other one pole is 60 m high from the top of this pole, the angle of depression of the top and the foot of the other pole are 30° and 60° respectively. Find the width of the river and the height of the other pole.
33. Solve for x :
$2\left(x^{2}+1 / x^{2}\right)-3(x-1 / x)-4=0$
34. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

