Section - A

1. A number is selected from numbers 1 to 25 . The probability that it is prime is:
(a) $5 / 6$
(b) $1 / 3$
(c) $1 / 6$
(d) $2 / 3$
2. If the angle of elevation of the top of a tower from two points distance $a$ and $b$ from the base and in the same straight line with at are complementary, then the height of the tower is:
(a) $a / b$
(b) $a b$
(c) $\sqrt{ } \mathrm{ab}$
(d) $\sqrt{a} / b$
3. The perimeter of a triangle is 30 cm and the circumference of its in circle is 88 cm . Then area of triangle is:
(a) $\mathbf{4 2 0} \mathrm{cm}^{2}$ (b) $140 \mathrm{~cm}^{2}$ (c) $\mathbf{7 0} \mathrm{cm}^{2}$ (d) $210 \mathrm{~cm}^{2}$
4. If the first term of an A.P. is 2 and common difference is 4 , then thrum of its 40 terms is:
(a) 2800
(b) 16000
(c) 3200
5. The surface area of a sphere is same as the curved surface right circular cylinder whose height and diameter are 12 cm each. The radius of the sphds:
(a) 12 cm
(b) 4 cm
(c) 3 cm
(d) 6 cm
6. If the circumference and the area of a circle are dierically equal, then diameter of the circle is:
(a) $\pi / 2$
(b) $2 \pi$
(c) 2
(d) 4
7. $A B$ and $C D$ are two common tangen ${ }^{*}$ Circles which touch each other at $C$. If $D$ lies on $A B$ such that $C D=4 \mathrm{~cm}$, then $A B$ is equat
(a) 12 cm
(b) 6 cm
(c) 4 cm
(d) 8 cm
8. A tangent $P Q$ at a point $P$ arcle of radius 5 cm meets a line through the centre $O$ at a point $Q$ such that $O Q=12 \mathrm{~cm}$. 4 Pdh $P Q$ is:
(a) 13 cm
(b) 8.5 cm
(c) $\sqrt{ } 119$
(d) 12 cm
9. If three coins are tossed simultaneously, then the probability of getting at least two heads, is:
(a) $1 / 4$
(b) $1 / 2$
(c) $2 / 4$
(d) $3 / 8$
10. The area of in circle of an equilateral triangle is $154 \mathrm{~cm}^{2}$. The perimeter of the triangle is:
(a) 72.7 cm
(b) 72.3 cm
(c) 71.5 cm
(d) 71.7 cm

Section - B
11. Prove that the tangents drawn at the ends of a diameter of a circle are paralled.
12. A bag contains 7 white, 4 red and 9 black balls. A ball is drawn at the random. What is the probability that ball drawn is not white?
13. Shoe that the points $(7,10),(-2,5)$ and $(3,-4)$ are the vertices of an isosceles right triangle.
14. Using the quadratic formula, solve the equation:
$A^{2} b^{2} x^{2}-\left(4 b^{4}-3 a^{4}\right) x-12 a^{2} b^{2}=0$
15. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
16. Find the radius of circle whose area is equal to the sum of the areas of three circles whose radii are $\mathbf{3 c m}, 4 \mathrm{~cm}$ and 12 cm .
17. The line segment joining the points $(3,-4)$ and $(1,2)$ is trisected at the points $P$ and $Q$.

If the coordinates of $P$ and $Q$ are $(p,-2)$ and $(5 / 3, q)$ respectively, find the values of $p$ and $q$.
18. Find the area of a circular ring whose external and internal diameters are $\mathbf{2 0} \mathbf{~ c m}$ and $\mathbf{6 c m}$.

Section - C
19. If $\mathbf{m}$ times the $\boldsymbol{m}^{\text {th }}$ tern of an A.P. is equal to $\mathbf{n}$ times its $\boldsymbol{n}^{\text {th }}$ term, find $(\mathbf{m}+\mathbf{n})^{\text {th }}$ term of A.P.?
20. Two tangents $T P$ and $T Q$ are drawn from an external point $T$ to a circle with centre $O$. As shown in fig. or if they are inclined to each other at an angle of $100^{\circ}$ then what is the value of $\llcorner$ POQ?
21. From the top of house, $h$ meters high from the ground, the an elevation and depression of the top and bottom of a tower on the other side of the stree $\sigma \theta$ and $\varphi$, respectively. Prove that the height of the tower $h(1+\tan \theta \cot \theta)$.
22. A motor boat whose speed is $8 \mathrm{~cm} /$ hour in still wat oes 15 km down stream and comes back in a total time of 3 hours 40 minutes. Find the sof the stream.
23. For what value of $n$ are the nth terms of twh.P. is $63,65,67$ $\qquad$ and 3, 10, 17. $\qquad$ equal?
24. Construct a triangle $A B C$ in which $A B$ cm, $\left\llcorner B=60^{\circ}\right.$ and $B C=5.5 \mathrm{~cm}$. Also construct a triangle $A B C$ similar to triangle $A B C$, w/jdeach side is $3 / 2$ times the corresponding side of the triangle $A B C$.
25. A bag contains 5 white ballsf 7, hed balls, 4 black balls and 2blue balls. One ball is drawn at random from the bag. What is jte probability that the ball drawn is:
(a) Not white
(b) Red or black
(c) White or blue
(d) Neither white not black
26. PQRS is a square land of the side 28 m . Two semicircular grass covered portions are to be made on two of its opposite sides as shown in the figure. How much area will be left uncovered? [Take $n=22 / 7]$
27. A solid composed of a cylinder with hemispherical ends. If the whole length of the solid is 104 cm and radius of each hemispherical end is $\mathbf{7 c m}$, find the cost of polishing its surface at the rate of Rs. 10 per dm ${ }^{2}$
28. If $A(4,-8), B(3,6)$ and $C(5,-4)$ are the vertices of triangle $A B C, D$ is the mid point of $B C$ and $P$ is a point on adjoined such that $A P / P D=2$. Find the coordinate of $P$.

Section - D
29. Solve for $x$ :
$x^{4}+2 x^{3}+13 x^{2}+2 x+1=0$.
30. The angles of depression of the top and bottom of an8 m tall building from the top of a multistoreyed building are $30^{\circ}$ and $45^{\circ}$ respectively. Find the height of the multi storeyed building and the distance between the two buildings.
31. Solve for $x$ :
$2\left(x^{2}+1 / x^{2}\right)-(x+1 / x)-11=0$
32. A class consists of a number of boys whose ages are in A.P., the common difference being 4 months. If they youngest boy is just eight years old and if sum of the ages is $\mathbf{1 6 8}$ years. Find the number of boys in the class.
33. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $7 / 5$ of the corresponding sides of first triangle.
34. A car has to wipers which do not over lap each wiper has a blaflength 25 cm sweeping through an angle $115^{\circ}$. Find the total area cleared at each sweep fhe blades.

