Problems and Solutions：CRMO－2011

1．Let $A B C$ be a triangle．Let D, E, F be points respectively on the segments $B C$ ， $C A, A B$ such that $A D, B E, C F$ concur at the point K ．Suppose $B D / D C=$ $B F / F A$ and $\angle A D B=\angle A F C$ ．Prove that $\angle A B E=\angle C A D$ ．

Solution：Since $B D / D C=B F / F A$ ， the lines $D F$ and $C A$ are parallel．We also have $\angle B D K=\angle A D B=\angle A F C=$ $180^{\circ}-\angle B F K$ ，so that $B D K F$ is a cyclic quadrilateral．Hence $\angle F B K=\angle F D K$ ． Finally，we get

2．Let $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{2011}\right)$ be a permutation（that a rearrangement）of the num－ bers $1,2,3, \ldots, 2011$ ．Show that there exist $⿴ 囗 十 ⺝ 刂$ numbers j, k such that $1 \leq j<$ $k \leq 2011$ and $\left|a_{j}-j\right|=\left|a_{k}-k\right|$ ．
Solution：Observe that $\sum_{j=1}^{2011}\left(a_{j}-j\right)$
Since $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{2011}\right)$ is a permu－ tation of $1,2,3, \ldots, 2011$ ．Hence $\sum_{j=1}^{20} \boldsymbol{y}_{j}-j \mid$ is even．Suppose $\left|a_{j}-j\right| \neq\left|a_{k}-k\right|$ for all $j \neq k$ ．This means the cबIIation $\left\{\left|a_{j}-j\right|: 1 \leq j \leq 2011\right\}$ is the same as the collection $\{0,1,2, \ldots, 2$ as the maximum difference is 2011－1＝2010． Hence

$$
\sum_{j=1}^{2011}\left|a_{j}-j\right|=2+3+\cdots+2010=\frac{2010 \times 2011}{2}=2011 \times 1005
$$

which is odd shows that $\left|a_{j}-j\right|=\left|a_{k}-k\right|$ for some $j \neq k$ ．
3．A naturalen lyber n is chosen strictly between two consecutive perfect squares． The smarr of these two squares is obtained by subtracting k from n and the larger one is obtained by adding l to n ．Prove that $n-k l$ is a perfect square．
Solution：Let u be a natural number such that $u^{2}<n<(u+1)^{2}$ ．Then $n-k=u^{2}$ and $n+l=(u+1)^{2}$ ．Thus

$$
\begin{aligned}
n-k l & =n-\left(n-u^{2}\right)\left((u+1)^{2}-n\right) \\
& =n-n(u+1)^{2}+n^{2}+u^{2}(u+1)^{2}-n u^{2} \\
& =n^{2}+n\left(1-(u+1)^{2}-u^{2}\right)+u^{2}(u+1)^{2} \\
& =n^{2}+n\left(1-2 u^{2}-2 u-1\right)+u^{2}(u+1)^{2} \\
& =n^{2}-2 n u(u+1)+(u(u+1))^{2} \\
& =(n-u(u+1))^{2} .
\end{aligned}
$$

4. Consider a 20 -sided convex polygon K, with vertices $A_{1}, A_{2}, \ldots, A_{20}$ in that order. Find the number of ways in which three sides of K can be chosen so that every pair among them has at least two sides of K between them. (For example $\left(A_{1} A_{2}, A_{4} A_{5}, A_{11} A_{12}\right)$ is an admissible triple while $\left(A_{1} A_{2}, A_{4} A_{5}, A_{19} A_{20}\right)$ is not.)

Solution: First let us count all the admissible triples having $A_{1} A_{2}$ as one of the sides. Having chosen $A_{1} A_{2}$, we cannot choose $A_{2} A_{3}$, $A_{3} A_{4}, A_{20} A_{1}$ nor $A_{19} A_{20}$. Thus we have to choose two sides separated by 2 sides among 15 sides $A_{4} A_{5}, A_{5} A_{6}, \ldots, A_{18} A_{19}$. If $A_{4} A_{5}$ is one of them, the choice for the remaining side Clly from 12 sides
$A_{7} A_{8}, A_{8} A_{9}, \ldots, A_{18} A_{19}$. If we choose $A_{5} A_{6}$ after $A_{1} A_{2}$ (t) e choice for the third side is now only from $A_{8} A_{9}, A_{9} A_{10}, \ldots, A_{18} A_{19}$ (11 sijes). Thus the number of choices progressively decreases and finally for the side $A_{15} A_{16}$ there is only one choice, namely, $A_{18} A_{19}$. Hence the numpertriples with $A_{1} A_{2}$ as one of the sides is

$$
12+11+10+\cdots \underbrace{2}_{2}=78
$$

Hence the number of triples then wid be $(78 \times 20) / 3=520$.
Remark: For an n-sided polygri number of such triples is $\frac{n(n-7)(n-8)}{6}$, for $n \geq 9$. We may check tha $\boldsymbol{y} n=20$, this gives $(20 \times 13 \times 12) / 6=520$.
5. Let $A B C$ be a triangle addet $B B_{1}, C C_{1}$ be respectively the bisectors of $\angle B$, $\angle C$ with B_{1} on $A C$, C_{1} on $A B$. Let E, F be the feet of perpendiculars drawn from A onto $\infty_{1}, C C_{1}$ respectively. Suppose D is the point at which the incircle of $A \mathbb{R}$ eouches $A B$. Prove that $A D=E F$.

Solution: Observe that $\angle A D I=$ $\angle A F I=\angle A E I=90^{\circ}$. Hence A, F, D, I, E all lie on the circle with $A I$ as diameter. We also know

$$
\angle B I C=90^{\circ}+\frac{\angle A}{2}=\angle F I E .
$$

This gives

$$
\begin{aligned}
& \angle F A E=180^{\circ}-\left(90^{\circ}+\frac{\angle A}{2}\right) \\
& =90^{\circ}-\frac{\angle A}{2} .
\end{aligned}
$$

We also have $\angle A I D=90^{\circ}-\frac{\angle A}{2}$. Thus $\angle F A E=\angle A I D$. This shows the chords $F E$ and $A D$ subtend equal angles at the circumference of the same circle. Hence they have equal lengths, i.e., $F E=A D$.
6. Find all pairs (x, y) of real numbers such that

$$
16^{x^{2}+y}+16^{x+y^{2}}=1 .
$$

Solution: Observe that

$$
x^{2}+y+x+y^{2}+\frac{1}{2}=\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2} \geq 0 .
$$

This shows that $x^{2}+y+x+y^{2} \geq(-1 / 2)$. Hence we have

$$
\begin{aligned}
& 1=16^{x^{2}+y}+16^{x+y^{2}}
\end{aligned} \quad \geq 2\left(16^{x^{2}+y} \cdot 16^{x+y^{2}}\right)^{1 / 2}, \quad \text { (by AM-GM inequality) }
$$

$$
\left(x+\frac{1}{2}\right)^{2}+(y+\mathbf{8}=0
$$

This shows that $(x, y)=(-1 / 2,-1 / 2)$ the only solution, as can easily be verified.

