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Regional Mathematical Olympiad-2010

Problems and Solutions

1. Let ABCDEF be a convex hexagon in which the diagonals AD, BE, CF are concurrent
at O. Suppose the area of traingle OAF is the geometric mean of those of OAB and
OEF ; and the area of triangle OBC is the geometric mean of those of OAB and OCD.
Prove that the area of triangle OED is the geometric mean of those of OCD and OEF .
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Solution: Let OA = a, OB = b, OC = c,
OD = d, OE = e, OF = f , [OAB] =
x, [OCD] = y, [OEF ] = z, [ODE] = u,
[OFA] = v and [OBC] = w. We are given
that v2 = zx, w2 = xy and we have to
prove that u2 = yz.
Since ∠AOB = ∠DOE, we have

u

x
=

1

2
de sin ∠DOE

1

2
ab sin ∠AOB

=
de

ab
.

Similarly, we obtain
v

y
=

fa

cd
,

w

z
=

bc

ef
.

Multiplying, these three equalities, we get uvw = xyz. Hence

x2y2z2 = u2v2w2 = u2(zx)(xy).

This gives u2 = yz, as desired.

2. Let P1(x) = ax2 − bx− c, P2(x) = bx2 − cx− a, P3(x) = cx2 − ax− b be three quadratic
polynomials where a, b, c are non-zero real numbers. Suppose there exists a real number
α such that P1(α) = P2(α) = P3(α). Prove that a = b = c.

Solution: We have three relations:

aα2 − bα − c = λ,

bα2 − cα − a = λ,

cα2 − aα − b = λ,

where λ is the common value. Eliminating α2 from these, taking these equations pair-
wise,we get three relations:

(ca − b2)α − (bc − a2) = λ(b − a), (ab − c2)α − (ca − b2) = λ(c − b),

(bc − a2) − (ab − c2) = λ(a − c).

Adding these three, we get

(ab + bc + ca − a2 − b2 − c2)(α − 1) = 0.

(Alternatively, multiplying above relations respectively by b − c, c − a and a − b, and
adding also leads to this.) Thus either ab + bc + ca − a2 − b2 − c2 = 0 or α = 1. In the
first case

0 = ab + bc + ca − a2 − b2 − c2 =
1

2

(

(a − b)2 + (b − c)2 + (c − a)2
)
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shows that a = b = c. If α = 1, then we obtain

a − b − c = b − c − a = c − a − b,

and once again we obtain a = b = c.

3. Find the number of 4-digit numbers(in base 10) having non-zero digits and which are
divisible by 4 but not by 8.

Solution: We divide the even 4-digit numbers having non-zero digits into 4 classes:
those ending in 2,4,6,8.

(A) Suppose a 4-digit number ends in 2. Then the second right digit must be odd in
order to be divisible by 4. Thus the last 2 digits must be of the form 12, 32,52,72
or 92. If a number ends in 12, 52 or 92, then the previous digit must be even in
order not to be divisible by 8 and we have 4 admissible even digits. Now the left
most digit of such a 4-digit number can be any non-zero digit and there are 9 such
ways, and we get 9 × 4 × 3 = 108 such numbers. If a number ends in 32 or 72,
then the previous digit must be odd in order not to be divisible by 8 and we have
5 admissible odd digits. Here again the left most digit of such a 4-digit number can
be any non-zero digit and there are 9 such ways, and we get 9 × 5 × 2 = 90 such
numbers. Thus the number of 4-digit numbers having non-zero digits, ending in 2,
divisible by 4 but not by 8 is 108 + 90 = 198.

(B) If the number ends in 4, then the previous digit must be even for divisibility by 4.
Thus the last two digits must be of the form 24, 44, 54, 84. If we take numbers
ending with 24 and 64, then the previous digit must be odd for non-divisibility by
8 and the left most digit can be any non-zero digit. Here we get 9× 5× 2 = 90 such
numbers. If the last two digits are of the form 44 and 84, then previous digit must
be even for non-divisibility by 8. And the left most digit can take 9 possible values.
We thus get 9 × 4 × 2 = 72 numbers. Thus the admissible numbers ending in 4 is
90 + 72 = 162.

(C) If a number ends with 6, then the last two digits must be of the form 16,36,56,76,96.
For numbers ending with 16, 56,76, the previous digit must be odd. For numbers
ending with 36, 76, the previous digit must be even. Thus we get here (9× 5× 3) +
(9 × 4 × 2) = 135 + 72 = 207 numbers.

(D) If a number ends with 8, then the last two digits must be of the form 28,48,68,88. For
numbers ending with 28, 68, the previous digit must be even. For numbers ending
with 48, 88, the previous digit must be odd. Thus we get (9× 4× 2)+ (9× 5× 2) =
72 + 90 = 162 numbers.

Thus the number of 4-digit numbers, having non-zero digits, and divisible by 4 but not
by 8 is

198 + 162 + 207 + 162 = 729.

Alternative Solution:. If we take any four consecutive even numbers and divide them
by 8, we get remainders 0,2,4,6 in some order. Thus there is only one number of the
form 8k + 4 among them which is divisible by 4 but not by 8. Hence if we take four even
consecutive numbers

1000a + 100b + 10c + 2, 1000a + 100b + 10c + 4,

1000a + 100b + 10c + 6, 1000a + 100b + 10c + 8,

there is exactly one among these four which is divisible by 4 but not by 8. Now we
can divide the set of all 4-digit even numbers with non-zero digits into groups of 4 such

2



www.ra
vij

ain
.w

ee
bly

.co
m

consecutive even numbers with a, b, c nonzero. And in each group, there is exactly one
number which is divisible by 4 but not by 8. The number of such groups is precisely
equal to 9 × 9 × 9 = 729, since we can vary a, b.c in the set {1, 2, 3, 4, 5, 6, 7, 8, 9}.

4. Find three distinct positive integers with the least possible sum such that the sum of the
reciprocals of any two integers among them is an integral multiple of the reciprocal of
the third integer.

Solution: Let x, y, z be three distinct positive integers satisfying the given conditions.
We may assume that x < y < z. Thus we have three relations:

1

y
+

1

z
=

a

x
,

1

z
+

1

x
=

b

y
,

1

x
+

1

y
=

c

z
,

for some positive integers a, b, c. Thus

1

x
+

1

y
+

1

z
=

a + 1

x
=

b + 1

y
=

c + 1

z
= r,

say. Since x < y < z, we observe that a < b < c. We also get

1

x
=

r

a + 1
,

1

y
=

r

b + 1
,

1

z
=

r

c + 1
.

Adding these, we obtain

r =
1

x
+

1

y
+

1

z
=

r

a + 1
+

r

b + 1
+

r

c + 1
,

or
1

a + 1
+

1

b + 1
+

1

c + 1
= 1. (1)

Using a < b < c, we get

1 =
1

a + 1
+

1

b + 1
+

1

c + 1
<

3

a + 1
.

Thus a < 2. We conclude that a = 1. Putting this in the relation (1), we get

1

b + 1
+

1

c + 1
= 1 − 1

2
=

1

2
.

Hence b < c gives
1

2
<

2

b + 1
.

Thus b + 1 < 4 or b < 3. Since b > a = 1, we must have b = 2. This gives

1

c + 1
=

1

2
− 1

3
=

1

6
,

or c = 5. Thus x : y : z = a + 1 : b + 1 : c + 1 = 2 : 3 : 6. Thus the required numbers
with the least sum are 2,3,6.

Alternative Solution: We first observe that (1, a, b) is not a solution whenever 1 <

a < b. Otherwise we should have
1

a
+

1

b
=

l

1
= l for some integer l. Hence we obtain

a + b

ab
= l showing that a

∣
∣b and b

∣
∣a. Thus a = b contradicting a 6= b. Thus the least

number should be 2. It is easy to verify that (2, 3, 4) and (2, 3, 5) are not solutions and
(2, 3, 6) satisfies all the conditions.(We may observe (2, 4, 5) is also not a solution.) Since
3 + 4 + 5 = 12 > 11 = 2 + 3 + 6, it follows that (2, 3, 6) has the required minimality.
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5. Let ABC be a triangle in which ∠A = 60◦. Let BE and CF be the bisectors of the
angles ∠B and ∠C with E on AC and F on AB. Let M be the reflection of A in the
line EF . Prove that M lies on BC.

B M C

I

E
F

L

A
Solution: Draw AL ⊥ EF and extend
it to meet AB in M . We show that AL =
LM . First we show that A,F, I,E are con-
cyclic. We have

∠BIC = 90◦ +
∠A

2
= 90◦ + 30◦ = 120◦.

Hence ∠FIE = ∠BIC = 120◦. Since
∠A = 60◦, it follows that A,F, I,E are
concyclic. Hence ∠BEF = ∠IEF =
∠IAF = ∠A/2. This gives

∠AFE = ∠ABE + ∠BEF =
∠B

2
+

∠A

2
.

Since ∠ALF = 90◦, we see that

∠FAM = 90◦ − ∠AFE = 90◦ − ∠B

2
− ∠A

2
=

∠C

2
= ∠FCM.

This implies that F,M,C,A are concyclic. It follows that

∠FMA = ∠FCA =
∠C

2
= ∠FAM.

Hence FMA is an isosceles triangle. But FL ⊥ AM . Hence L is the mid-point of AM
or AL = LM .

6. For each integer n ≥ 1, define an =

[

n
[√

n
]

]

, where [x] denotes the largest integer not

exceeding x, for any real number x. Find the number of all n in the set {1, 2, 3, . . . , 2010}
for which an > an+1.

Solution: Let us examine the first few natural numbers: 1,2,3,4,5,6,7,8,9. Here we see
that an = 1, 2, 3, 2, 2, 3, 3, 4, 3. We observe that an ≤ an+1 for all n except when n + 1
is a square in which case an > an+1. We prove that this observation is valid in general.
Consider the range

m2,m2 + 1,m2 + 2, . . . ,m2 + m,m2 + m + 1, . . . ,m2 + 2m.

Let n take values in this range so that n = m2 + r, where 0 ≤ r ≤ 2m. Then we see that
[
√

n] = m and hence
[

n
[√

n
]

]

=

[
m2 + r

m

]

= m +
[ r

m

]

.

Thus an takes the values m,m,m, . . . ,m
︸ ︷︷ ︸

m times

,m + 1,m + 1,m + 1, . . . ,m + 1
︸ ︷︷ ︸

m times

,m + 2, in this

range. But when n = (m + 1)2, we see that an = m + 1. This shows that an−1 > an

whenever n = (m + 1)2. When we take n in the set {1, 2, 3, . . . , 2010}, we see that the
only squares are 12, 22, . . . , 442(since 442 = 1936 and 452 = 2025) and n = (m + 1)2 is
possible for only 43 values of m. Thus an > an+1 for 43 values of n. (These are 22 − 1,
32 − 1, . . ., 442 − 1.)

———-00———-
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