
Newton’s Laws of Motion

Now that we have learned how to describe
motion, how do we cause the motion that 
we want?

We apply forces on an object!

But what do forces directly affect: 

location?   velocity?   acceleration?   jerk?

Newton answered these questions by 
postulating three laws of motion.



Newton’s First Law of Motion

Newton’s First Law of Motion:  an object in 
motion will, in the absence of forces, tend 
to remain in motion with neither the speed 
nor direction changing.

This, at first, does not seem obvious.  Most 
things on earth tend to slow down and stop.  
However, when we consider the situation, 
we see that there are lots of forces tending 
to slow the objects down such as friction 
and air resistance.



Newton’s First Law of Motion

When we look at the planets and moon, 
however, it is easier to see that they just 
keep right on going!

Also, when we remove or reduce a lot of the 
forces on an object, it does tend to keep 
right on going.  Consider a ball rolling on a 
smooth floor.  We don’t need forces to keep 
the motion going!



Newton’s Second Law of Motion
If we want to change the motion, we push on 

it (that is, apply forces).  

Newton states this in his Second Law of 
Motion:  The resultant force (vector sum of 
the individual forces) on an object causes 
the object to accelerate in the same direction 
as the resultant force and in inverse 
proportion to the mass of the object:

 F = ma .



Newton’s Second Law of Motion

Note that this is a vector equation, and should 
really be worked in component form:

 Fx = max

 Fy = may .

We can now see that Newton’s First Law of 
Motion is really just a special case of his 
Second Law of Motion.



Newton’s Third Law of Motion
There is one further important aspect of 

motion that Newton identified:  the 
distinction between forces that act on an 
object and forces that act by the object.  
This leads to his Third Law of Motion:  
For every force by a first object on a 
second object, there is a force by the 
second object on the first object with the 
same magnitude but in the opposite 
direction.



Newton’s Third Law of Motion
This is sometimes called the law of action and 

reaction.

I like to call it:  you can’t push yourself!  
You can only push on an object and hope 
that it pushes back.

Example:  when you walk up a stairs, you use 
your muscles to push down on the stairs and 
you trust that the stairs will push back up on 
you lifting you up the stairs.



Mass

Here for the first time we encounter mass.  
Note that mass relates acceleration to 
resultant force:  the bigger the acceleration 
for the same force, the smaller the mass.  
This property of matter is actually called 
inertial mass.

We did not need mass when considering the 
description of motion, but we do need mass 
when considering how to cause that motion 
using forces.



Units

The units of mass are kilograms.  This is the 
third fundamental unit (along with meters 
and seconds) in the MKS system of units.

The units of force in the MKS system are 
Newtons, where a force of 1 Nt will give a 
mass of 1 kg an acceleration of 1 m/s2 .



Forces
In order to work with forces, we have to 

identify the common forces we find, both as 
to magnitude and direction:

• gravity (near earth’s surface, this is called 
weight, W) magnitude = m*g; direction = 
down

Note that mass is involved in the force of 
gravity!  This is a separate property from 
that of inertia, so we give this property the 
name gravitational mass.



Forces

Since mass is involved on both sides of 
Newton’s second law when gravity is the 
only force (falling object): in Fgr = -mg as 
gravitational mass and in m*a as inertial 
mass, the mass cancels out giving us the 
reason all objects fall with the same 
acceleration (neglecting air resistance)!

F = ma becomes:  -mg = ma



Forces

Later we’ll look more closely at gravity, even 
when we are not near the earth’s surface.

• contact force, Fc:  magnitude = balances 
up to point of collapse;  direction = 
perpendicular to the surface that supplies 
the contact.



Forces, cont.

• friction, Ff:  magnitude:  balances up to a 
point, and then reaches a constant value
that depends on the two surfaces and how 
hard the two surfaces are being pressed 
together  ( Ff  mFc ), direction: parallel 
to surface.

• tension, T: magnitude: pulls same at one 
end as another unless rope is being 
accelerated;  direction: parallel to rope.



Statics

• Statics is the name for situations in which 
there is zero acceleration.

• Example:  consider the situation below 
where two ropes hold up a weight:

qleft=30o qright = 55o

Tleft Tright

W = 100 Nt



Example of Statics

• What is the tension in each rope?

• Are the two tensions the same, or, if not, 
which rope has the higher tension?

qleft=30o qright = 55o

Tleft= ? Tright= ?

W = 100 Nt



Statics Example

• We have the diagram, and we have the 
information on the diagram.

• We know what we’re looking for (Tleft and 
Tright).

• What principle or law do we employ to 
relate what we know to what we don’t 
know?



Statics Example

• We recognize this as a statics problem 
(since there is no motion and hence no 
acceleration).  Thus we have: 

 Fx = 0

 Fy = 0.

• We are given three forces (W, Tleft and 
Tright) in polar form, so we need to convert 
these polar vectors into rectangular form.



Example of Statics

• Tleft-x =  - Tleft cos(qleft)     =  - Tleft cos(30o)
• Tright-x =  + Tright cos(qright) =  + Trightcos(55o)
• Wx = 0

qleft=30o qright = 55o

Tleft Tright

W = 100 Nt

Tleft-x Tright-x



Example of Statics

• Note that, since Wx = 0, Tleft-x must be the 
same as Tright-x (except for sign).

• Also note that the x components do nothing 
to help hold up the weight, since the weight 
acts strictly in the negative y direction!

• From this fact and using the diagram, we 
can see that the magnitude of Tright , since it 
is steeper, must be greater than that of Tleft.



Example of Statics

• From Newton’s Second Law for the x 
components we have then:

 Fx = - Tleft cos(30o) + Tright cos(55o) + 0 = 0

or simplifying:

Tleft cos(30o) = Tright cos(55o) .

• This is one equation in two unknowns (Tleft

and Tright), so we also need to consider the y 
component equation.



Example of Statics

• Tleft-y = + Tleft sin(qleft)     = + Tleft sin(30o)

• Tright-y = + Tright sin(qright)  = + Trightsin(55o)

• Wy = - 100 Nt

qleft=30o qright = 55o

Tleft Tright

W = 100 Nt

Tleft-y
Tright-y



Example of Statics

• From Newton’s Second Law for the y 
components we have then:

 Fy = + Tleft sin(30o) + Tright sin(55o) - 100 Nt 
= 0

or simplifying:

Tleft sin(30o) + Tright sin(55o)  =  100 Nt .

• This is one equation in two unknowns (Tleft

and Tright), so we have two simultaneous 
equations to solve.



Example of Statics

Tleft cos(30o)  =  Tright cos(55o)

Tleft sin(30o) + Tright sin(55o)  =  100 Nt

• Solving the first equation for Tleft in terms 
of Tright: Tleft =  Tright cos(55o) / cos(30o)

• And using this in the second equation gives

[Tright cos(55o) / cos(30o)] sin(30o) + 

Tright sin(55o)  =  100 Nt



Example of Statics

[Tright cos(55o) / cos(30o)] sin(30o) + 

Tright sin(55o)  =  100 Nt

This is now one equation for one unknown 
(Tright), so we have:     Tright =

100 Nt / [cos(55o)*sin(30o)/cos(30o) + sin(55o)]  =

86.93 Nt.

We now use Tleft =  Tright cos(55o) / cos(30o)

to get Tleft = 86.93 Nt * cos(55o) / cos(30o) = 

57.58 Nt.



Example of Statics

Tright = 86.93 Nt. Tleft =  57.58 Nt

Note that Tright is in fact larger than Tleft as we 
figured it should be from the diagram 
earlier.

Also note that the sum of the magnitudes of 
Tright and Tleft are greater than the weight 
of 100 Nt.  This is because part of each 
tension, the x-component, goes into pulling 
sideways instead of pulling up.



Dynamics

When things do move in response to forces, we have 
what we call dynamics.  In dynamics there is an 
acceleration on the object.

If all the forces are constant during the motion, then 
we can use the equations we have for constant 
acceleration.  If the motion is circular, then we can 
use the equations we have for circular 
acceleration.

Let’s now consider a common situation:  riding an 
elevator.



Example: Elevator

You are in an elevator at rest on the ground 
floor.  You stand on a scale.  What does the 
scale read?  Assume for definiteness sake 
that your mass is 70 kg (about my mass).



Elevator

Standing on a scale in an elevator at rest (or in 
constant motion), we have a statics problem 
in one dimension:   Fy = +Fscale - mg  =  0.

The scale reads the contact force that the scale 
is exerting.  In this case, it is easy to see that 
the force of the scale balances your weight, 
and so the scale reads your weight:

Fscale =  mg  =  70 kg * 9.8 m/s2 =  686 Nt.



Elevator

Now the elevator starts moving - dynamics.  
When this happens, the scale reads 730 Nt
(which is more than your weight of  686 Nt).

Is the elevator moving up, moving down, or 
can you tell?

What is the acceleration of the elevator?



Elevator

What we have is still based on Newton’s 
Second Law:  in this case, however, 
although your weight hasn’t changed, the 
force the scale exerts has increased.  This 
must mean that there is an acceleration.  
Since the force of the scale is greater than 
your weight, the net force is up, and so the 
acceleration is up.  And since you were at 
rest, you now must be moving up!



Elevator

 Fy =  +Fscale - mg  =  may

730 Nt- 686 Nt  =  70 kg * ay or

ay =  44 Nt / 70 kg  =  +0.63 m/s2 .

If the acceleration is positive (and the force of 
the scale is larger than your weight), are you 
always moving up (positive)?



Elevator

Not necessarily.  A positive acceleration only 
means the velocity is changing and 
becoming:  either more positive, or less 
negative.

Besides moving up and speeding up, you 
could be moving down but slowing down.  
In fact, when you are going down in an 
elevator, just before you reach the bottom 
floor, you do feel “heavy”.



More Examples

There are more examples of using basic forces 
in Newton’s Second Law in the Computer 
Homework Assignment, Vol 1 #7, entitled 
Newton’s Second Law.



Gravitational Force

• Previously we saw that the force of gravity 
depended on the mass of an object as well as 
the constant acceleration due to gravity, g.

• But we know that objects on the moon fall to 
the moon’s surface, not to the earth’s surface.  
If objects do have mass, then why don’t ALL 
objects fall to the earth?



Gravitational Force

• Newton “discovered” the Law of Gravity by 
sitting under an apple tree and getting 
conked!  Is this correct?

• Imagine sitting under an apple tree and 
getting conked by an apple.  Also consider 
that you see the moon up in the sky.  Have 
you wondered why the apple falls down but 
the moon doesn’t?



Gravitation

• But what makes the moon go around the 
earth instead of continuing off into space?

• If the moon is orbiting, there must be some 
force causing the circular acceleration for 
circular motion.  The obvious answer (at 

least now) is that the earth’s gravity does 
cause the moon to fall - it’s just moving 
sideways so that it continues to move and 
fall - continues in its circular orbit!



Newton’s Law of Gravity

• In looking at gravity as the cause of the 
moon’s circular motion, Newton came to 
the conclusion that the force of gravity had 
to be weaker at the moon’s distance than it 
was on the earth - otherwise the moon 
would have to be going much faster to stay 
in orbit.



Newton’s Law of Gravity

• Newton came up with the following 
equation for gravity:  any two objects attract 
one another based on the mass of each, the 
distance apart, and some constant based on 
units: Fgravity =  G*m1*m2 / r12

2

where r12 is the distance between m1 and m2

and G = 6.67 x 10-11 Nt*m2 / kg2 which 
describes how strong gravity is.



Newton’s Law of Gravity

Do all objects with mass attract all other 
objects with mass?  Are you attracted to 
your neighbor (gravitationally, that is)?

We have done experiments that show the 
answer is yes!  



Newton’s Law of Gravity

However, because the strength of gravity is 
very weak, the force of attraction is very 
weak.  For one kilogram separated from 
another kilogram by one meter: 

Fg = Gm1m2/r12
2 = 

(6.67 x 10-11 Nt-m2/kg2)*(1 kg)*(1 kg) / [1 m]2

= 6.67 x 10-11 Nt (a very small force).



Newton’s Law of Gravity

At the earth’s surface, we have

Fgravity = G*Mearth*m / Rearth
2

where the distance between an object on the 
earth’s surface and the earth (center to 
center distance) is the radius of the earth.

Note that G, Mearth and Rearth are all constant, 
so that near the earth this reduces to   

Fgravity = mg where g = G*Mearth/Rearth
2 .



Mass of the Earth

The great gravity we  feel on the earth is due 
to the huge mass of the earth.  Even though 
gravity is weak, the huge mass of the earth 
combines lots of very weak forces into one 
reasonably strong force.

But how much mass does the earth have?



Mass of the Earth

We can use the equation: g = G*Mearth/Rearth
2

to solve for Mearth since we know 

g = 9.8 m/s2 (from our lab experiment), 

G = 6.67 x 10-11 Nt-m2/kg2 (from precise 
gravity force experiments), and

Rearth = 6,400 km (since we know the 
circumference of the earth = 25,000 miles). 



Mass of the Earth

g = G*Mearth/Rearth
2    or  Mearth = g*Rearth

2/G

= 9.8 m/s2 * (6.4 x 106 m)2  / 6.67 x 10-11 Nt-m2/kg2

= 6.0 x 1024 kg .

This value is certainly large as we expect the 
mass of the earth to be large.  But is there 
another way to get the same answer?  If 
there is, that would greatly add to our 
confidence in our answer!



Another way

How about using the fact that the moon orbits 
the earth - due to the earth’s gravity?

We know that the moon goes in (roughly) a 
circular orbit, and we can use Newton’s 
Second Law to relate that circular orbit to 
the Earth’s gravity:  Fgravity = mmoon acircular

GMearthmmoon/Rearth-moon
2 =  mmoonw

2Rearth-moon

or  Mearth =  w2Rearth-moon
3/G .



Another Way

Mearth =  w2Rearth-moon
3/G

where w = 2f = 2/T and 

T = 1 month (actually 27.3 days) = 2.36 x 106s

Rearth-moon = 250,000 miles = 3.84 x 108 m

Mearth = (2/2.36 x 106s)2 * (3.84 x 108 m)3 / 
6.67 x 10-11 Nt-m2/kg2 =  6.0 x 1024 kg

which matches the first answer for mearth !



Satellites
The same concepts (equations):  

Fgravity = msat acircular

where Fgravity = GMearthmsat/Rsat
2 and 

acircular = w2Rsat , vθ = w2Rsat , w = 2f, and f = 1/T

can be used to determine the period of a 
satellite in circular orbit around the earth, or 
determine the radius the satellite needs to 
have for a certain desired period (such as 
T=24 hours for a geosynchronous satellite).



Space Shuttle

• The same relations can be used to get the 
necessary speed of the space shuttle in its 
orbit.  All we need are those equations plus 
something about the orbit (height or period).

• Problem: If the space shuttle orbits at a 
height of 200 miles (=  320 km) above the 
earth’s surface, how fast does it need to be 
going in its orbit?



Space Shuttle

Since we have an orbiting satellite (in this 
case, the shuttle acts like the satellite):

Fgravity =  msat acircular

where Fgravity =  GMearthmsat/rsat
2 and

acircular = w2Rsat , vθ = w2Rsat , w = 2f, and f = 1/T.

We know G,  Mearth, and  rsat = Rearth+ height, 
and we note that the msat will cancel out 
(that is, msat is irrelevant!).



Space Shuttle

Fgravity =  GMearthmsat/rsat
2 =  msat acircular = msatw

2rsat

or  GMearth/rsat
3 = w2 so we can solve for w:

w = [6.67 x 10-11 Nt-m2/kg2 * 6.0 x 1024 kg / ( 6.72 x 
106 m)3 ]1/2 = 1.148 x 10-3 rad/sec .

From w = 2f = 2/T, we can solve for T 

T = 2/w = 2 * 3.14 / 1.148 x 10-3 sec = 5,470 sec

= 91 minutes.

From vq = wr   we get    vq =

1.148 x 10-3 rad/sec * 6.72 x 106 m = 7,720 m/s = 
17,000 mph



In general

• In general we can determine the mass of a 
planet (such as the earth) by watching the 
orbit of a moon or satellite around the 
planet - knowing T and r.  This applies to 
the sun as well, since the earth (and other 
planets) orbit it.

• We can determine the acceleration due to 
gravity (gplanet) on a planet’s surface by 
knowing the planet’s mass and radius.



Computer Homework

The computer homework assignment on 
Circular Motion & Satellites, Volume 1 #7, 
has problems in this area.



Rotational Force (Torque)

• Forces cause change in the motion, but so 
far we have only considered motion that 
changes the position of the object.

• What about changing the “spin” or rotation 
of an object?

• To get a nice introduction to the idea of 
torque, see the computer homework 
program on Introduction to Torque (Vol 
2 #4).  This program is due after the test, 
but you may wish to view it before the test.



Torque

• There are two important quantities in 
torque:  Force (F)  and where you apply the 
force (called  radius, r).

t  =  r x F  =  r F sin(qrF) 

To get a large torque, we need to use a large 
radius, a large force, and apply the force 
perpendicular to the radius!



Statics and Torque

Just as  F = 0 when the object is static,  so 
also  t = 0 when the object is not spinning 
(or spinning at a constant rate).

In static cases, there is no obvious center to 
measure the radius from, so we are free to 
choose any point.  However, some points 
may be simpler to use than others.



Your elbow

Let’s consider as an example of torque how 
your muscles, bones and joints work.

Consider holding up a ball of weight 5 lb.

How does this work?

First we draw a diagram: bicepts

tricepts

xb

xw



Your elbow

• In terms of forces and distances, the 
diagram looks like this:

Estimate the distance

from your elbow joint      Fc Fb

to your bicept connect Fw

point, rb, and to

your hand, rw. rc=0 rb

rw



Your elbow

• If the ball weights 5 lb, how much force 
does your biceps pull up with?  How much 
force of contact does your upper arm push 
down with on your lower arm at the elbow?

• What is the basic principle to use?  Statics: 

 F = 0 and    t = 0.



Your elbow

From  F = 0 we have:

-Fc + Fb - W  =  0

And from  t = 0 and measuring from the 
elbow gives:   Fc*rc + Fb*rb - W*rw =  0 .

We have two equations and we have two 
unknowns (Fc and Fb).



Your elbow

• We can use the torque equation first, since 
rc=0 eliminates one of the unknowns, Fc.

Fc*rc + Fb*rb - W*rw =  0 or  Fb = W*rw/rb .

Then we can use the force equation to find Fc .

-Fc + Fb - W  =  0, or  Fc =  Fb - W.



Your elbow

• By putting in reasonable values for rb and 
rw, you can see that the biceps have to 
excert a large force to hold up a relatively 
light weight!

• What advantage does this give?  Note how 
far the biceps have to contract in order to 
move the weight!  This is the advantage of 
the elbow set-up!

• In practice, we use clubs and rackets to 
make this difference even greater!


